Corticotropin-releasing factor and noradrenergic signalling exert reciprocal control over startle reactivity.
نویسندگان
چکیده
Corticotropin-releasing factor (CRF) and norepinephrine (NE) levels are altered in post-traumatic stress disorder and may be related to symptoms of hyperarousal, including exaggerated startle, in these patients. In animals, activation of both systems modulates anxiety behaviours including startle plasticity; however, it is unknown if they exert their actions orthogonally or dependently. We tested the hypothesis that NE receptor activation is required for CRF effects on startle and that CRF1 receptor activation is required for NE effects on startle. The study examined the effects of: (1) α2 agonist clonidine (0.18 mg/kg i.p.), α1 antagonist prazosin (0.8 mg/kg), and β1/2 antagonist propranolol (0.8, 8.0 mg/kg) pretreatment on ovine-CRF (oCRF)- (0.6 nmol) induced increases in startle reactivity and disruption of prepulse inhibition (PPI); (2) α2 antagonist atipamezole (1-30 mg/kg) and α1 agonist cirazoline (0.025-1.0 mg/kg) treatment on startle; (3) CRF1 antagonist (antalarmin, 14 mg/kg) pretreatment on atipamezole- (10.0 mg/kg) induced increases in startle. oCRF robustly increased startle and reduced PPI. Pretreatment with clonidine or prazosin, but not propranolol, blocked oCRF-induced increases in startle but had no effect on oCRF-induced disruptions in PPI. Atipamezole treatment increased startle, which was partially attenuated by CRF1 antagonist pretreatment. Cirazoline treatment did not increase startle. These findings suggest that CRF modulation of startle, but not PPI, requires activation of α1 adrenergic receptors, while CRF1 activation also contributes to NE modulation of startle. These data support a bi-directional model of CRF-NE modulation of stress responses and suggest that both systems must be activated to induce stress effects on startle reactivity.
منابع مشابه
Predator Stress-Induced CRF Release Causes Enduring Sensitization of Basolateral Amygdala Norepinephrine Systems that Promote PTSD-Like Startle Abnormalities.
UNLABELLED The neurobiology of post-traumatic stress disorder (PTSD) remains unclear. Intense stress promotes PTSD, which has been associated with exaggerated startle and deficient sensorimotor gating. Here, we examined the long-term sequelae of a rodent model of traumatic stress (repeated predator exposure) on amygdala systems that modulate startle and prepulse inhibition (PPI), an operational...
متن کاملCorticotropin-releasing factor receptors CRF1 and CRF2 exert both additive and opposing influences on defensive startle behavior.
The corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) are crucial mediators of physiological and behavioral responses to stress. In animals, CRF1 appears to primarily mediate CRF-induced anxiety-like responses, but the role of CRF2 during stress is still unclear. Here we report the effects of CRF1 and CRF2 on the magnitude and plasticity of defensive startle responses in mice. Star...
متن کاملBehavioral and anatomical interactions between dopamine and corticotropin-releasing factor in the rat.
The neuropeptide corticotropin-releasing factor (CRF) is believed to play a role in a number of psychiatric conditions, including anxiety disorders and depression. In the present study, male Sprague Dawley rats were used to examine the behavioral effects of altering dopamine transmission on CRF-enhanced startle, a behavioral assay believed to reflect stress- or anxiety-like states. Systemic adm...
متن کاملVariations in maternal care in infancy regulate the development of stress reactivity.
Naturally occurring variations in maternal care in early postnatal life are associated with the development of individual differences in behavioral and hypothalamic-pituitary-adrenal responses to stress in the rat. These effects appear to be mediated by the influence of maternal licking/grooming on the development of central systems that serve to activate (corticotropin-releasing factor) or inh...
متن کاملLesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotropin-releasing factor on the acoustic startle reflex.
Intracerebroventricular (icv) infusion of corticotropin-releasing factor (CRF) was previously found to produce a long-lasting, dose-dependent (0.1-1.0 microgram) increase in the amplitude of the acoustic startle reflex. The present study sought to determine where in the CNS CRF acts to increase startle. Intracisternal infusion of CRF (0.1-1.0 microgram) increased startle with a time course and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The international journal of neuropsychopharmacology
دوره 14 9 شماره
صفحات -
تاریخ انتشار 2011